B. subtilis DSM33018 is able to degrade pirB and alleviates AHPND in Artemia

04 THG04
1512 view

B. subtilis DSM33018 is able to degrade pirB and alleviates AHPND in Artemia

Early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND), is a penaeid shrimp disease that causes serious economic losses and significant mortality, up to 100%, in cultured shrimp species.

The dramatically high mortality rates in infected shrimp are caused by dysfunction and destruction of the hepatopancreas (Lightner et al. 2014). There is no inflammatory response to the causative Vibrio spp., because AHPND is elicited by a toxin (Han et al. 2015), which is encoded by a plasmid (Yang et al. 2013; Tran et al. 2013). Various Vibrio spp., not only V. parahaemolyticus were demonstrated to carry this pathogenic plasmid.

Comparison of genome sequences revealed that the pathogenic plasmid encodes genes homologous with Photorhabdus insect-related (Pir) toxin genes (Kondo et al. 2014). The Pir toxins act as binary proteins, they are encoded by the pirA and pirB genes, and both proteins are necessary for oral toxicity (Blackburn et al. 2006; Ahantarig et al. 2009; Han et al. 2015).

At the Laboratory of Aquaculture and Artemia Reference Center of the University of Ghent, it was tested, if B. subtilis DSM 33018 is able to degrade the AHPND-causing pirB toxin in vitro. It could indeed be demonstrated that B. subtilis DSM 33018 is able to degrade the AHPND-causing pirB toxin (Figure 1).

Gram-positive probiotic organisms, such as Bacillus subtilis from Biomin are not involved in horizontal gene transfer processes with Gram-negative organisms such as Vibrio spp. and are thus unlikely to acquire resistance or virulence genes or plasmids from Vibrio species (Moriarty, 1999). B. subtilis DSM 33018 is part of the probiotic product range AquaStar® with scientifically proven positive effects on aquaculture productivity.

Figure 1: Bacillus subtilis DSM33018 is able to degrade pirB, one of the two subunit toxins needed to elicit AHPND in shrimp. SDS page was performed to visualize pirB degradation by B. subtilis DSM33018 cells and cell-free supernatant. The darker a band is on this SDS page gel, the more protein (pirB or pirA) is present.

 

It was then tested if B. subtilis DSM33018 is able to rescue infected animals from AHPND related mortality in gnotobiotic artemia. Bacillus subtilis DSM 33018 (Ba) was tested at 107cfu/mL and 108 CFU/mL. At the concentration of 107 CFU/mL, Bacillus treatment resulted in a survival rate of 63% versus 47% in control (Figure 2). Enterococcus (En), Pediococcus (Pe), and Lactobacillus (La) alone were not able to significantly improve the survival rate after the toxin challenge. AquaStar® (Mix) at concentrations 107 CFU/mL and 108 CFU/mL however rescued the artemia from AHPND related mortality and allowed survival rates of 77% and 70%.

Figure 2. Artemia survival after challenge with purified pir toxins at 26 µg/mL. Bacillus DSM33018 (Ba) was tested at 107cfu/mL and 108 CFU/mL. At the concentration of 107 CFU/mL, it tended to increase the survival rate from 47% in control to 63%. Enterococcus (En), Pediococcus (Pe), and Lactobacillus (La) alone tended to improve the survival rate after the challenge. AquaStar® (Mix) at concentrations 107 CFU/mL and 108 CFU/mL rescued the artemia from AHPND related mortality and allowed survival rates of 77% and 70%. LVS3 is a sterile Aeromonas control, acting as nutritional support. ‘Non’ is the control challenge without probiotic treatment nor basic nutritional support.

It remains to be determined if B. subtilis alone helps to alleviate AHPND in shrimp culture. Having said that, when Pacific white leg shrimp (L. vannamei) were challenged with pirA and pirB toxin-producing Vibrio parahaemolyticus (AHPND positive), via an immersion infection model, supplementing AquaStar® Growout (a combination of Bacillus sp. plus lactic acid bacteria) appeared to significantly reduce mortalities (Figure 3; Kesselring et al, 2019).

Figure 3. Mortality of shrimp fed control (grey) or AquaStar® Growout (green) diets after a V. parahaemolyticus (AHPND positive) immersion challenge.

 

 

Other Technical Topics

21 THG08

TOXIC GAS MANAGEMENT IN SHRIMP POND

To manage toxic gases in shrimp ponds, focus on a two-pronged approach: proactive prevention and reactive treatment. Proactive methods include controlling feed to avoid excess nutrients, ensuring good aeration, and maintaining water quality parameters like pH and alkalinity. Reactive measures involve water exchange, using probiotics, and applying chemicals like lime or zeolites to break down waste and neutralize toxic gases like hydrogen sulfide and ammonia.


14 THG06

SOLUTIONS FOR PREVENTION AND TREATMENT OF INTESTINAL BACTERIAL INFECTIONS IN SHRIMP

The shrimp intestine is one of the most important organs in shrimp physiology. However, due to its simple structure, it is highly susceptible to pathogenic invasion. Intestinal bacterial infections commonly lead to several widespread problems such as segmental gut necrosis, enteritis, white feces syndrome, and empty gut, all of which directly affect productivity and crop performance


03 THG03

PREVENTION AND TREATMENT SOLUTIONS FOR TRANSLUCENT POST-LARVAE DISEASE (TPD) IN SHRIMP

Translucent Post-Larvae Disease (TPD), also known as “Glass Post-Larvae Disease,” is an emerging disease affecting Penaeus vannamei. It was first reported in March 2020 in China and is characterized by extremely high mortality rates, particularly in shrimp at the PL4–PL7 stages. The disease is caused by a highly virulent strain of Vibrio parahaemolyticus, designated VpTPD, which has resulted in severe economic losses—impacting 70–80% of hatcheries as well as shrimp farmers. The disease spreads rapidly and can cause up to 90% mortality within 2–3 days, leading to catastrophic financial losses if not promptly managed.


31 THG05

POTENTIAL OF IgY PRODUCTION TECHNOLOGY AND ITS APPLICATIONS IN VETERINARY MEDICINE AND AQUACULTURE

Immunoglobulin of the yolk is an immune globulin produced by hens to protect chicks during the first weeks of life against emerging pathogens. It is functionally equivalent to immunoglobulin G found in the colostrum of mammals. IgY is a completely natural antibody product. A primary goal of animal welfare is to reduce painful procedures. IgY technology meets this requirement because antibodies are collected non-invasively through egg collection rather than blood sampling, which causes stress and pain in mammals. IgY technology also offers significant economic advantages since raising hens is far more cost-effective than raising rabbits, sheep, or horses for antibody production.




31 THG01

PROTOCOL FOR PREVENTION AND TREATMENT OF ACUTE HEPATOPANCREATIC NECROSIS DISEASE (AHPND) IN SHRIMP

A protocol for preventing and treating Acute Hepatopancreatic Necrosis Disease (AHPND) in shrimp involves biosecurity, farm management, and advanced techniques like phage therapy and probiotics. Prevention focuses on stringent biosecurity to prevent pathogen introduction, while management techniques include regular water changes, siphoning, and careful feed optimization. If the disease is confirmed, treatment may involve disinfecting the pond and its contents, and future efforts are exploring technologies like vaccination and immune enhancement through plant-based compounds. 


24 THG08

SOLUTIONS FOR PREVENTION AND TREATMENT OF BLACK SPOT DISEASE IN WHITELEG SHRIMP

Prevention of black spot disease in whiteleg shrimp involves maintaining good water quality, preventing injuries, managing feed residue, and using biosecurity measures. Treatment can include post-harvest dipping in solutions like sodium bisulfite or ascorbic acid, and in some cases, in-pond treatments such as slaked lime or probiotics may be used. Improve pond conditions: Maintain good water quality and clean pond bottoms to remove waste and feed residue. Biosecurity: use disease-free seed shrimp, disinfect water before filling ponds, prevent wild shrimp, crabs, and clams from entering the pond.


04 THG11

Prevention of White Feces Syndrome, White Gut Disease and White Muscle Disease in Shrimp

Shrimp culture tends to now be developed intensively with upgraded technology for higher and successful production. On many occasions, shrimp culture is affected by various diseases and experienced in the loss of crop or reduced the production level by various reasons, writes Mr. Prakash Chandra Behera, India. Intensive and semi-intensive aquafarming accompanies several disease problems often due to opportunistic pathogens as evident from general aquaculture. High stocking densities, high food inputs, and other organic loads stimulate the selection and proliferation of opportunistic pathogens like bacteria, viruses, fungi, protozoa, etc.


04 THG11

B. subtilis DSM33018 is able to degrade pirB and alleviates AHPND in Artemia

Early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND), is a penaeid shrimp disease that causes serious economic losses and significant mortality, up to 100%, in cultured shrimp species.


11 THG12

THE PROCESS OF HANDLING FINGERLING FISHES WHEN STOCKING THEM INTO THE POND

Fish when imported to the pond often lose a lot due to:



- Construction during transportation.



 Stress due to changing living environment.



- Easy to get bacteria and fungi to enter the body.


11 THG12

THE CLEANING WORMS, FLUKES IN GUT OF SNAKEHEAD FISH PROCESS

- Internal parasites disease on snakehead fish caused by hookworm, roundworm, tapeworm parasitizing in fish intestine.